Floodplains: The utility player of flood protection

When you think of flood protection, you likely think of dams and levees. But there’s another element of flood protection that provides many additional benefits – floodplains.

Floodplains are a bit like the utility player in baseball – called on to play a number of positions and always getting the job done. Here are several roles that floodplains play in our communities.

Floodplains reduce flooding
Floodplains are the land along rivers that take on and store excess water during storms and flooding. The water can then be slowly released over time. They help prevent floodwaters from reaching homes and businesses.  Floodplains are essential protection, working in tandem with dams and levees.floodplain

Floodplains protect our groundwater
Water stored on floodplains slowly seeps into the ground and helps replenish our aquifer which holds the region’s drinking water. The Great Miami River and the Buried Valley Aquifer interact with one another. Water from the river seeps into the aquifer during heavy rains/high flows, while groundwater provides flow to the river during our driest months when river flows are low.

Floodplains prevent river pollution
When rivers are running fast during high-water events, so are sediment, nutrients and other pollutants. Floodplains help to slow the river flows and are a place where the water can spread out. When water slows down, it can have the time to drain down through the soil, which filters out pollutants. The plants and trees that grow on floodplains take up excess nutrients; provide shade; and regulate water temperature for aquatic life, which prefers cooler water temperatures.

Floodplains provide for habitat
When land along rivers is not developed, it can provide habitat for many types of wildlife. The plants and trees that grow in floodplains provide places for animals to live. The roots of trees that extend into the water provide habitat for fish and stream insects.

Floodplains provide land for agriculture
With floodwaters come nutrient rich soils, making the floodplain especially good for agriculture, the strongest industry in Ohio’s economy. Many floodplains in our region are valued as prime agriculture lands.

Floodplains provide land for recreation
Floodplains along the river provide land for bike trails. The majority of the year, floodplains along the river remain dry, making the land perfect for bike trails and recreational use. About 60 of the 80 miles of Great Miami River Bike Trail are on MCD-owned land acquired for the flood protection system.  Without these flood protection lands, it would be difficult to have such a long, uninterrupted scenic bike trail through historic and charming riverfront communities. The Great Miami River Bike Trail is part of the nation’s largest paved trail network.floodplain recreation

Floodplains also provide areas where people can reach the river and enjoy recreation and wildlife-watching activities. Places where people can fish, launch a boat, play in a park, or just walk along the river provide the opportunities a community needs to stay healthy and active.

Just like a utility player for a baseball team will likely never be the MVP, floodplains will likely never get the credit that dams and levees do when it comes to flood protection. But they get the job done effectively, efficiently and unassumingly.

Good land-use planning protects floodplains and, in turn, floodplains protect us from flooding and clearly provide many other benefits. Encourage good land-use planning in your community.

 

Winter 2016 and “The Mother of all El Niños”

El Niño is getting a lot of media attention these days being blamed for floods, famine, and the spread of diseases. This year’s El Niño is shaping up to be one of the stronger, if not the strongest, El Niño in history. In fact, it’s drawing comparisons to the 1997 El Niño event, which is the strongest El Niño on record and sometimes called “The Mother of all El Niños.”

According to the National Oceanic and Atmospheric Administration (NOAA), the current El Niño event in the Pacific Ocean is expected to peak in December, but the impacts of El Niño are expected to last well into the spring of 2016. These impacts are likely to influence weather in our region.

El Nino comparison

Comparison of 1997 El Niño (left) and 2015 El Niño

When it comes to Earth’s climate, weather phenomena happening in faraway places can sometimes have dramatic impacts locally. El Niño is characterized by unusually warm ocean temperatures in the Equatorial Pacific Ocean. The image above shows areas of the Pacific Ocean with above-normal water temperatures colored in red in August of the 1997 El Niño event and August of 2015.

When El Niño occurs, very warm waters in the Pacific Ocean pump more moisture into the atmosphere. This impacts and changes the direction of major wind currents, steering weather systems across the United States. In other words, the typical storm paths in the United States are shifted. Typically, El Niño shifts storm tracks south during the winter months resulting in increased precipitation across the southern tier of the United States. At the same time, El Niño tends to bring warmer-than-normal temperatures to Alaska, Canada, and the northern tier of the United States. 

2016 3 month precipitation outlook

2016 3-month precipitation outlook

So what El Niño effects can our region expect
to see for the upcoming winter and spring?  According to NOAA’s climate prediction
center
, our region is likely to experience a mild winter temperature-wise with below-normal precipitation. The image on the right shows areas of the United States expected to have above-normal precipitation in green and
below-normal precipitation in brown over the next three months. Most of Ohio is colored in brown. The outlook for spring is similar, with near-normal temperatures and below-normal precipitation.

Is this forecast a sure bet? It isn’t. The Earth’s climate systems are extremely complex, and El Niño is only one of many factors influencing our weather. The temperature and precipitation outcomes we experience this winter are a result of a multitude of complex interactions among the Earth’s weather systems. We can only wait and see!