Using a market-based solution to improve water quality

By Sarah Hippensteel Hall, water resources manager
Guest contributor

Although water quality in our rivers and streams has seen great improvements over the past few decades, about 40 percent still fail to meet water quality standards. Excess nutrients – nitrogen and phosphorus — are a main cause. This failure is triggering additional regulations focused on wastewater treatment plants that could lead to rising costs for consumers like you and me.

More than 70 percent of the land that drains to the Great Miami River is used for agriculture, so the majority of nutrient-related water quality challenges relate to farming practices. Agricultural producers have worked diligently to implement conservation practices but financial incentives at the federal, state and local levels don’t match the demand.

Collaborative Solution
So a partnership among MCD and federal, state and local partners began in 2004 to find a better way to improve water quality at a lower cost. The result was a market-based Trading Program that reduces nutrients in streams and rivers as an alternative to traditional regulatory strategies. Farmers are paid to plant cover crops, install streamside buffer zones, and manage fertilizer application and manure storage to keep nitrogen and phosphorus from running off land into rivers and streams.

partners listMore than $3 million in funding for this pilot program came from wastewater treatment plants, the Ohio Department of Natural Resources, the U.S. Department of Agriculture, and the U.S. Environmental Protection Agency. The Miami Conservancy District manages the Trading Program, conducts extensive monitoring and publishes reports on levels of nutrients in the Great Miami River to track program results over time.

The success of the program has drawn international attention.

photo of buffer strips

Cover crops help reduce nutrient runoff.

 Economic benefits
An extensive economic and market analysis was completed before the pilot began to understand the costs and benefits. The analysis estimated that wastewater treatment plant upgrades could cost $422.5 million for the communities in our region – costs that could be passed on to customers.

The costs for agricultural conservation practices to achieve a similar level of nutrient reduction were projected at only $37.8 million, a potential $384.7 million savings compared to wastewater treatment plant upgrades.

It was estimated that on average, wastewater plants would pay $23.37 to reduce one pound of phosphorus using technology upgrades at the plant compared to $1.08 using agriculture conservation practices. For nitrogen, wastewater costs were $4.72/pound compared to $0.45/pound for agriculture.

The analysis concluded that water quality trading in the Great Miami River Watershed has the potential to provide significant cost savings with increased environmental benefit when compared to traditional regulatory approaches.

Current Status
As of March 2015, 467 agricultural projects have been installed, with farmers receiving $1.76 million to implement them. These projects are expected to reduce 626 tons of nutrient discharges to rivers and streams and achieve other benefits, including more sustainable farming operations and additional environmental improvement.

Originally expected in 2005, the additional regulations on wastewater treatment plants are not yet in place but are anticipated. As the Trading Program moves from pilot to implementation, a group of 14 soil and water conservation districts in southwest Ohio recently formed a joint board and are taking steps to assume management of the program.

Advertisements

Pollution shut down Toledo’s drinking water system – could it happen here?

By Sarah Hippensteel Hall, manager for watershed partnerships
Guest contributor

Last year, pollution in Lake Erie halted Toledo’s delivery of its drinking water to 400,000 people for several days. It happened when water that Toledo pulls from the lake was found to have dangerously high levels of microcystin, a toxin that is produced by algae. Microcystin is highly toxic to the livers of humans and animals. When nutrients – nitrogen and phosphorus – are overabundant in lakes and river, the levels of toxin-producing algae may increase. Nutrients that contribute to algae growth come from many sources, including agriculture, lawn fertilizers, wastewater treatment plants, sewer overflows, leaking septic systems, and precipitation.

Could algal toxins shut down our water, too?
A similar scenario is less likely here because this region draws nearly all of its drinking water from the aquifer rather than a river or lake. However, an overabundance of nutrients in our watershed (the land area that drains to the Great Miami River), can lead to the growth of algae in our rivers, streams, and lakes.

algae bloom at Island Park Dam summer 2012

An algae bloom at Island Park Dam in Dayton during the summer of 2012.

An algal bloom is an abundant or excessive growth of algae. Some algal blooms do not produce toxins, but can still cause problems for aquatic life such as changes in fish population including death, and nuisance problems such as thick mats of algae that reduce access to water for  recreation.

Algal blooms are not the only problem in our water. About 40 percent of the rivers and streams in our watershed fail to meet Ohio water quality standards. Excess nutrients are a main cause. And those same nutrients negatively impact water that flows downstream to the Ohio River all the way to the Gulf of Mexico.

map of nutrient monitoring stations in the Great Miami River Watershed

Nutrient monitoring stations in the Great Miami River Watershed

How do we know what’s in our waterways?
The Miami Conservancy District has regularly collected data from our rivers on the levels of nutrients since 2004. The data tells us that the levels of both nitrogen and phosphorus are too high at certain times of the year. The levels change with rainfall and other seasonal conditions.

Because it is also possible that toxin-producing algae grow in our watershed, the Miami Conservancy District tested for toxins in algal blooms in the Great Miami River in 2012 and 2014. So far, no toxins were detected.

A common sense approach to reducing nutrients
Because more than 70 percent of the land in the Great Miami River Watershed is used for agriculture, the majority of nutrient-related water runoff relates to farmland use.

The Miami Conservancy District has partnered with federal, state, and local partners to create a program, called the Great Miami River Watershed Water Quality Credit Trading Program, that reduces polluted runoff from farmland. Farmers are paid to reduce nutrients from flowing into rivers and streams.

Next time: How the Great Miami River Watershed Water Quality Credit Trading Program works

 

Where’s the best tasting water in the world? Hamilton, Ohio, of course

By Mike Ekberg, water resources manager

The City of Hamilton has created the best tasting water in the world using groundwater from the Great Miami River Buried Valley Aquifer. The city received the gold medal for Best Municipal Water at the 25th anniversary Berkeley Springs International Water Tasting in West Virginia held in February.

What is this “aquifer” anyway?

Think of the Great Miami Buried Valley Aquifer as a giant container with porous sand and gravel that can trap and hold water. Have you ever poured a bucket of water into sand? The sand absorbs the water quickly and it disappears from sight. A sand and gravel aquifer soaks up water in a similar way.

Where is it and where did it come from?

The buried valley aquifer generally underlies the Great Miami River and major tributaries such as the Stillwater and Mad rivers and Twin Creek.  The sand and gravel deposits that make up the buried valley aquifer were deposited by ancient rivers that existed before the present day Great Miami River took shape. These ancient rivers carried large amounts of water from melting glaciers during the end of the last ice age.

Map showing the location of the buried valley aquifer (light blue) in relation to the Great Miami River drainage area.

Map showing the location of the buried valley aquifer (light blue) in relation to the Great Miami River drainage area.

How much water?

The buried valley aquifer is the most productive aquifer in the Great Miami River Watershed. Municipal drinking water wells, like the city of Hamilton’s, can sometimes yield more than 3,000 gallons per minute. In comparison, there are many places in Ohio where wells can produce no more than 25 gallons per minute and often fewer.

Large groundwater yields are possible because:

    • Our region receives abundant annual precipitation in the form of rain and snow which resupplies the buried valley aquifer.
    • The buried valley aquifer is able to absorb large quantities of water quickly.
    • The groundwater in the buried valley aquifer interacts with the water in the Great Miami River and can supply each other with water.
    • Most of the water pumped out of the buried valley aquifer is returned to the Great Miami River Watershed when wastewater is discharged in the streams and rivers. This offsets water losses that occur when some of the water  is pumped out of the aquifer and released into another watershed. For example, groundwater is used in the production of beer, which could be shipped outside the watershed for purchase.
Graphic showing interconnected nature of the buried valley aquifer and the Great Miami River

This graphic shows the interconnected nature of the buried valley aquifer and the Great Miami River. Water normally flows from the aquifer to the river (top), but flows often reverse during floods.

How the aquifer improves our lives

Besides being the main source of drinking water for a majority of communities along the Great Miami River, the buried valley aquifer:

  • Provides our region with a safe and plentiful supply of water that can be treated to drinking water quality standards fairly inexpensively when compared with using water from a rive lake.
The buried valley aquifer is our region’s #1 source of drinking water.

The buried valley aquifer is our region’s #1 source of drinking water.

  • Supplies businesses and industry with a reliable supply of water. For example, the Miller Coors Brewery in Trenton uses water from the buried valley aquifer for its brewing process.
  • Improves the quality of life in the region by providing continuous flow to the Great Miami River even during dry periods. This flow sustains water for fish habitat and makes the Great Miami River attractive for kayaking and rowing. For example, nearly half of the annual water flow in the Great Miami River at the city of Hamilton comes from the buried valley aquifer.
  • Provides potential geothermal heating and cooling opportunities. Groundwater in the buried valley aquifer remains around 56 °F year round and can be used by geothermal heating and cooling systems.

If the water in the aquifer was polluted or depleted, our region would be less resilient in coping with drought conditions, seasonal water shortages might be more commonplace, and communities might have to pay for more expensive treatment to make the groundwater safe for drinking. .

So, while the city of Hamilton’s water received the gold medal at the Berkeley Springs International Water Tasting, it’s clear our buried valley aquifer made the award possible. Yes, our buried valley aquifer is worthy of a top prize.